aboutsummaryrefslogtreecommitdiff
path: root/src/render.zig
diff options
context:
space:
mode:
Diffstat (limited to 'src/render.zig')
-rw-r--r--src/render.zig63
1 files changed, 63 insertions, 0 deletions
diff --git a/src/render.zig b/src/render.zig
new file mode 100644
index 0000000..dc03de1
--- /dev/null
+++ b/src/render.zig
@@ -0,0 +1,63 @@
+const RenderData = struct {
+ output: *c.wlr_output,
+ renderer: *c.wlr_renderer,
+ view: *View,
+ when: *c.struct_timespec,
+};
+
+fn render_surface(surface: [*c]c.wlr_surface, sx: c_int, sy: c_int, data: ?*c_void) callconv(.C) void {
+ // This function is called for every surface that needs to be rendered.
+ var rdata = @ptrCast(*RenderData, @alignCast(@alignOf(RenderData), data));
+ var view = rdata.*.view;
+ var output = rdata.*.output;
+
+ // We first obtain a wlr_texture, which is a GPU resource. wlroots
+ // automatically handles negotiating these with the client. The underlying
+ // resource could be an opaque handle passed from the client, or the client
+ // could have sent a pixel buffer which we copied to the GPU, or a few other
+ // means. You don't have to worry about this, wlroots takes care of it.
+ var texture = c.wlr_surface_get_texture(surface);
+ if (texture == null) {
+ return;
+ }
+
+ // The view has a position in layout coordinates. If you have two displays,
+ // one next to the other, both 1080p, a view on the rightmost display might
+ // have layout coordinates of 2000,100. We need to translate that to
+ // output-local coordinates, or (2000 - 1920).
+ var ox: f64 = 0.0;
+ var oy: f64 = 0.0;
+ c.wlr_output_layout_output_coords(view.*.server.*.output_layout, output, &ox, &oy);
+ ox += @intToFloat(f64, view.*.x + sx);
+ oy += @intToFloat(f64, view.*.y + sy);
+
+ // We also have to apply the scale factor for HiDPI outputs. This is only
+ // part of the puzzle, TinyWL does not fully support HiDPI.
+ var box = c.wlr_box{
+ .x = @floatToInt(c_int, ox * output.*.scale),
+ .y = @floatToInt(c_int, oy * output.*.scale),
+ .width = @floatToInt(c_int, @intToFloat(f32, surface.*.current.width) * output.*.scale),
+ .height = @floatToInt(c_int, @intToFloat(f32, surface.*.current.height) * output.*.scale),
+ };
+
+ // Those familiar with OpenGL are also familiar with the role of matricies
+ // in graphics programming. We need to prepare a matrix to render the view
+ // with. wlr_matrix_project_box is a helper which takes a box with a desired
+ // x, y coordinates, width and height, and an output geometry, then
+ // prepares an orthographic projection and multiplies the necessary
+ // transforms to produce a model-view-projection matrix.
+ //
+ // Naturally you can do this any way you like, for example to make a 3D
+ // compositor.
+ var matrix: [9]f32 = undefined;
+ var transform = c.wlr_output_transform_invert(surface.*.current.transform);
+ c.wlr_matrix_project_box(&matrix, &box, transform, 0.0, &output.*.transform_matrix);
+
+ // This takes our matrix, the texture, and an alpha, and performs the actual
+ // rendering on the GPU.
+ _ = c.wlr_render_texture_with_matrix(rdata.*.renderer, texture, &matrix, 1.0);
+
+ // This lets the client know that we've displayed that frame and it can
+ // prepare another one now if it likes.
+ c.wlr_surface_send_frame_done(surface, rdata.*.when);
+}