aboutsummaryrefslogtreecommitdiff
path: root/src/render.zig
diff options
context:
space:
mode:
Diffstat (limited to 'src/render.zig')
-rw-r--r--src/render.zig348
1 files changed, 348 insertions, 0 deletions
diff --git a/src/render.zig b/src/render.zig
new file mode 100644
index 0000000..5eb324c
--- /dev/null
+++ b/src/render.zig
@@ -0,0 +1,348 @@
+const std = @import("std");
+const c = @import("c.zig");
+
+const LayerSurface = @import("layer_surface.zig").LayerSurface;
+const Output = @import("output.zig").Output;
+const Server = @import("server.zig").Server;
+const View = @import("view.zig").View;
+const ViewStack = @import("view_stack.zig").ViewStack;
+
+pub fn renderOutput(output: *Output) void {
+ const renderer = output.root.server.wlr_renderer;
+
+ var now: c.struct_timespec = undefined;
+ _ = c.clock_gettime(c.CLOCK_MONOTONIC, &now);
+
+ // wlr_output_attach_render makes the OpenGL context current.
+ if (!c.wlr_output_attach_render(output.wlr_output, null)) {
+ return;
+ }
+ // The "effective" resolution can change if you rotate your outputs.
+ var width: c_int = undefined;
+ var height: c_int = undefined;
+ c.wlr_output_effective_resolution(output.wlr_output, &width, &height);
+ // Begin the renderer (calls glViewport and some other GL sanity checks)
+ c.wlr_renderer_begin(renderer, width, height);
+
+ const color = [_]f32{ 0.0, 0.16862745, 0.21176471, 1.0 };
+ c.wlr_renderer_clear(renderer, &color);
+
+ // The view has a position in layout coordinates. If you have two displays,
+ // one next to the other, both 1080p, a view on the rightmost display might
+ // have layout coordinates of 2000,100. We need to translate that to
+ // output-local coordinates, or (2000 - 1920).
+ var ox: f64 = 0.0;
+ var oy: f64 = 0.0;
+ c.wlr_output_layout_output_coords(
+ output.root.wlr_output_layout,
+ output.wlr_output,
+ &ox,
+ &oy,
+ );
+
+ renderLayer(output.*, output.layers[c.ZWLR_LAYER_SHELL_V1_LAYER_BACKGROUND], &now, ox, oy);
+ renderLayer(output.*, output.layers[c.ZWLR_LAYER_SHELL_V1_LAYER_BOTTOM], &now, ox, oy);
+
+ // The first view in the list is "on top" so iterate in reverse.
+ var it = ViewStack.reverseIterator(
+ output.root.views.last,
+ output.root.current_focused_tags,
+ );
+ while (it.next()) |view| {
+ // This check prevents a race condition when a frame is requested
+ // between mapping of a view and the first configure being handled.
+ if (view.current_box.width == 0 or view.current_box.height == 0) {
+ continue;
+ }
+ renderView(output.*, view, &now, ox, oy);
+ renderBorders(output.*, view, &now, ox, oy);
+ }
+
+ renderLayer(output.*, output.layers[c.ZWLR_LAYER_SHELL_V1_LAYER_TOP], &now, ox, oy);
+ renderLayer(output.*, output.layers[c.ZWLR_LAYER_SHELL_V1_LAYER_OVERLAY], &now, ox, oy);
+
+ // Hardware cursors are rendered by the GPU on a separate plane, and can be
+ // moved around without re-rendering what's beneath them - which is more
+ // efficient. However, not all hardware supports hardware cursors. For this
+ // reason, wlroots provides a software fallback, which we ask it to render
+ // here. wlr_cursor handles configuring hardware vs software cursors for you,
+ // and this function is a no-op when hardware cursors are in use.
+ c.wlr_output_render_software_cursors(output.wlr_output, null);
+
+ // Conclude rendering and swap the buffers, showing the final frame
+ // on-screen.
+ c.wlr_renderer_end(renderer);
+ // TODO: handle failure
+ _ = c.wlr_output_commit(output.wlr_output);
+}
+
+const LayerSurfaceRenderData = struct {
+ output: *c.wlr_output,
+ renderer: *c.wlr_renderer,
+ layer_surface: *LayerSurface,
+ when: *c.struct_timespec,
+ ox: f64,
+ oy: f64,
+};
+
+/// Render all surfaces on the passed layer
+fn renderLayer(output: Output, layer: std.TailQueue(LayerSurface), now: *c.struct_timespec, ox: f64, oy: f64) void {
+ var it = layer.first;
+ while (it) |node| : (it = node.next) {
+ const layer_surface = &node.data;
+ var rdata = LayerSurfaceRenderData{
+ .output = output.wlr_output,
+ .renderer = output.root.server.wlr_renderer,
+ .layer_surface = layer_surface,
+ .when = now,
+ .ox = ox,
+ .oy = oy,
+ };
+ c.wlr_layer_surface_v1_for_each_surface(
+ layer_surface.wlr_layer_surface,
+ renderLayerSurface,
+ &rdata,
+ );
+ }
+}
+
+/// This function is called for every layer surface and popup that needs to be rendered.
+/// TODO: refactor this to reduce code duplication
+fn renderLayerSurface(_surface: ?*c.wlr_surface, sx: c_int, sy: c_int, data: ?*c_void) callconv(.C) void {
+ // wlroots says this will never be null
+ const surface = _surface.?;
+ // This function is called for every surface that needs to be rendered.
+ const rdata = @ptrCast(*LayerSurfaceRenderData, @alignCast(@alignOf(LayerSurfaceRenderData), data));
+ const layer_surface = rdata.layer_surface;
+ const output = rdata.output;
+
+ // We first obtain a wlr_texture, which is a GPU resource. wlroots
+ // automatically handles negotiating these with the client. The underlying
+ // resource could be an opaque handle passed from the client, or the client
+ // could have sent a pixel buffer which we copied to the GPU, or a few other
+ // means. You don't have to worry about this, wlroots takes care of it.
+ const texture = c.wlr_surface_get_texture(surface);
+ if (texture == null) {
+ return;
+ }
+
+ var box = c.wlr_box{
+ .x = @floatToInt(c_int, rdata.ox) + layer_surface.box.x + sx,
+ .y = @floatToInt(c_int, rdata.oy) + layer_surface.box.y + sy,
+ .width = surface.current.width,
+ .height = surface.current.height,
+ };
+
+ // Scale the box to the output's current scaling factor
+ scaleBox(&box, output.scale);
+
+ // wlr_matrix_project_box is a helper which takes a box with a desired
+ // x, y coordinates, width and height, and an output geometry, then
+ // prepares an orthographic projection and multiplies the necessary
+ // transforms to produce a model-view-projection matrix.
+ var matrix: [9]f32 = undefined;
+ const transform = c.wlr_output_transform_invert(surface.current.transform);
+ c.wlr_matrix_project_box(&matrix, &box, transform, 0.0, &output.transform_matrix);
+
+ // This takes our matrix, the texture, and an alpha, and performs the actual
+ // rendering on the GPU.
+ _ = c.wlr_render_texture_with_matrix(rdata.renderer, texture, &matrix, 1.0);
+
+ // This lets the client know that we've displayed that frame and it can
+ // prepare another one now if it likes.
+ c.wlr_surface_send_frame_done(surface, rdata.when);
+}
+
+const ViewRenderData = struct {
+ output: *c.wlr_output,
+ renderer: *c.wlr_renderer,
+ view: *View,
+ when: *c.struct_timespec,
+ ox: f64,
+ oy: f64,
+};
+
+fn renderView(output: Output, view: *View, now: *c.struct_timespec, ox: f64, oy: f64) void {
+ // If we have a stashed buffer, we are in the middle of a transaction
+ // and need to render that buffer until the transaction is complete.
+ if (view.stashed_buffer) |buffer| {
+ const border_width = view.root.server.config.border_width;
+ const view_padding = view.root.server.config.view_padding;
+ var box = c.wlr_box{
+ .x = view.current_box.x + @intCast(i32, border_width + view_padding),
+ .y = view.current_box.y + @intCast(i32, border_width + view_padding),
+ .width = @intCast(c_int, view.current_box.width - border_width * 2 - view_padding * 2),
+ .height = @intCast(c_int, view.current_box.height - border_width * 2 - view_padding * 2),
+ };
+
+ // Scale the box to the output's current scaling factor
+ scaleBox(&box, output.wlr_output.scale);
+
+ var matrix: [9]f32 = undefined;
+ c.wlr_matrix_project_box(
+ &matrix,
+ &box,
+ c.enum_wl_output_transform.WL_OUTPUT_TRANSFORM_NORMAL,
+ 0.0,
+ &output.wlr_output.transform_matrix,
+ );
+
+ // This takes our matrix, the texture, and an alpha, and performs the actual
+ // rendering on the GPU.
+ _ = c.wlr_render_texture_with_matrix(
+ output.root.server.wlr_renderer,
+ buffer.texture,
+ &matrix,
+ 1.0,
+ );
+ } else {
+ // Since there is no stashed buffer, we are not in the middle of
+ // a transaction and may simply render each toplevel surface.
+ var rdata = ViewRenderData{
+ .output = output.wlr_output,
+ .view = view,
+ .renderer = output.root.server.wlr_renderer,
+ .when = now,
+ .ox = ox,
+ .oy = oy,
+ };
+
+ // This calls our render_surface function for each surface among the
+ // xdg_surface's toplevel and popups.
+ c.wlr_xdg_surface_for_each_surface(view.wlr_xdg_surface, renderSurface, &rdata);
+ }
+}
+
+/// This function is called for every toplevel and popup surface that needs to be rendered.
+fn renderSurface(_surface: ?*c.wlr_surface, sx: c_int, sy: c_int, data: ?*c_void) callconv(.C) void {
+ // wlroots says this will never be null
+ const surface = _surface.?;
+ const rdata = @ptrCast(*ViewRenderData, @alignCast(@alignOf(ViewRenderData), data));
+ const view = rdata.view;
+ const output = rdata.output;
+
+ // We first obtain a wlr_texture, which is a GPU resource. wlroots
+ // automatically handles negotiating these with the client. The underlying
+ // resource could be an opaque handle passed from the client, or the client
+ // could have sent a pixel buffer which we copied to the GPU, or a few other
+ // means. You don't have to worry about this, wlroots takes care of it.
+ const texture = c.wlr_surface_get_texture(surface);
+ if (texture == null) {
+ return;
+ }
+
+ const border_width = view.root.server.config.border_width;
+ const view_padding = view.root.server.config.view_padding;
+ var box = c.wlr_box{
+ .x = @floatToInt(c_int, rdata.ox) + view.current_box.x + sx +
+ @intCast(c_int, border_width + view_padding),
+ .y = @floatToInt(c_int, rdata.oy) + view.current_box.y + sy +
+ @intCast(c_int, border_width + view_padding),
+ .width = surface.current.width,
+ .height = surface.current.height,
+ };
+
+ // Scale the box to the output's current scaling factor
+ scaleBox(&box, output.scale);
+
+ // wlr_matrix_project_box is a helper which takes a box with a desired
+ // x, y coordinates, width and height, and an output geometry, then
+ // prepares an orthographic projection and multiplies the necessary
+ // transforms to produce a model-view-projection matrix.
+ var matrix: [9]f32 = undefined;
+ const transform = c.wlr_output_transform_invert(surface.current.transform);
+ c.wlr_matrix_project_box(&matrix, &box, transform, 0.0, &output.transform_matrix);
+
+ // This takes our matrix, the texture, and an alpha, and performs the actual
+ // rendering on the GPU.
+ _ = c.wlr_render_texture_with_matrix(rdata.renderer, texture, &matrix, 1.0);
+
+ // This lets the client know that we've displayed that frame and it can
+ // prepare another one now if it likes.
+ c.wlr_surface_send_frame_done(surface, rdata.when);
+}
+
+fn renderBorders(output: Output, view: *View, now: *c.struct_timespec, ox: f64, oy: f64) void {
+ var border: c.wlr_box = undefined;
+ const color = if (output.root.focused_view == view)
+ [_]f32{ 0.57647059, 0.63137255, 0.63137255, 1.0 } // Solarized base1
+ else
+ [_]f32{ 0.34509804, 0.43137255, 0.45882353, 1.0 }; // Solarized base01
+ const border_width = output.root.server.config.border_width;
+ const view_padding = output.root.server.config.view_padding;
+
+ // left border
+ border.x = @floatToInt(c_int, ox) + view.current_box.x + @intCast(c_int, view_padding);
+ border.y = @floatToInt(c_int, oy) + view.current_box.y + @intCast(c_int, view_padding);
+ border.width = @intCast(c_int, border_width);
+ border.height = @intCast(c_int, view.current_box.height - view_padding * 2);
+ scaleBox(&border, output.wlr_output.scale);
+ c.wlr_render_rect(
+ output.root.server.wlr_renderer,
+ &border,
+ &color,
+ &output.wlr_output.transform_matrix,
+ );
+
+ // right border
+ border.x = @floatToInt(c_int, ox) + view.current_box.x +
+ @intCast(c_int, view.current_box.width - border_width - view_padding);
+ border.y = @floatToInt(c_int, oy) + view.current_box.y + @intCast(c_int, view_padding);
+ border.width = @intCast(c_int, border_width);
+ border.height = @intCast(c_int, view.current_box.height - view_padding * 2);
+ scaleBox(&border, output.wlr_output.scale);
+ c.wlr_render_rect(
+ output.root.server.wlr_renderer,
+ &border,
+ &color,
+ &output.wlr_output.transform_matrix,
+ );
+
+ // top border
+ border.x = @floatToInt(c_int, ox) + view.current_box.x +
+ @intCast(c_int, border_width + view_padding);
+ border.y = @floatToInt(c_int, oy) + view.current_box.y +
+ @intCast(c_int, view_padding);
+ border.width = @intCast(c_int, view.current_box.width -
+ border_width * 2 - view_padding * 2);
+ border.height = @intCast(c_int, border_width);
+ scaleBox(&border, output.wlr_output.scale);
+ c.wlr_render_rect(
+ output.root.server.wlr_renderer,
+ &border,
+ &color,
+ &output.wlr_output.transform_matrix,
+ );
+
+ // bottom border
+ border.x = @floatToInt(c_int, ox) + view.current_box.x +
+ @intCast(c_int, border_width + view_padding);
+ border.y = @floatToInt(c_int, oy) + view.current_box.y +
+ @intCast(c_int, view.current_box.height - border_width - view_padding);
+ border.width = @intCast(c_int, view.current_box.width -
+ border_width * 2 - view_padding * 2);
+ border.height = @intCast(c_int, border_width);
+ scaleBox(&border, output.wlr_output.scale);
+ c.wlr_render_rect(
+ output.root.server.wlr_renderer,
+ &border,
+ &color,
+ &output.wlr_output.transform_matrix,
+ );
+}
+
+/// Scale a wlr_box, taking the possibility of fractional scaling into account.
+fn scaleBox(box: *c.wlr_box, scale: f64) void {
+ box.x = @floatToInt(c_int, @round(@intToFloat(f64, box.x) * scale));
+ box.y = @floatToInt(c_int, @round(@intToFloat(f64, box.y) * scale));
+ box.width = scaleLength(box.width, box.x, scale);
+ box.height = scaleLength(box.height, box.x, scale);
+}
+
+/// Scales a width/height.
+///
+/// This might seem overly complex, but it needs to work for fractional scaling.
+fn scaleLength(length: c_int, offset: c_int, scale: f64) c_int {
+ return @floatToInt(c_int, @round(@intToFloat(f64, offset + length) * scale) -
+ @round(@intToFloat(f64, offset) * scale));
+}